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Objective of this paper

Discuss some of the key issues in dealing
with porosity data in a 3D reservoir modeling
environment

Upscaling of well based Porosity evaluations

Porosity mapping the inter-well domain constrained
with other data (e.g., seismic)

Create awareness of common issues and
propose potential solutions and work-
arounds



Upscaling of Porosity data
How t o avoi-di piionudad e

Mapping the Inter-well Domain
Principles of Geo-statistical Gridding
Data Representativeness
Defining Spatial Trends

Use of depth trends T consistency issues in context of porosity
cut-offs

Use of seismic derived trends i wh at does t he sei smi

Quantifying Uncertainty
Summary and Conclusions
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Porosity upscaling principles

From log scale to 3D model scale
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Successful upscaling:
Minimizes Net pore Volume differences

Upscaled Porosity values are representative enough
e.g., to use as input into saturation-height

For a volumetrically correct solution, upscaling
should weigh Porosity values with Net Rock Volume




Alternative Porosity

upscaling approaches

Reservoir modeling tools offer a range of alternative
approaches

The nNnNet Reservoir Porosityc
to problems

Using input Porosity curves that are 0-ed in the
non-net intervals can give seriously flawed results
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Mapping Porosity

Principles of Geostatistical Gridding

Data Representativeness
I well sampled Porosity versus population (=field) Mean

Depth and Spatial Trends



Geo-statistical gridding

- kriging and related algorithms
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Example of bia
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Predictive model

Seismic attribute

Amplitude / Seismic attribute
O0sampl eddé at wel

Exploration high-grades prospects and typically not representative
drilling occurs on high amplitude

Well  Well

4 Netsand, Net
et sand, Ne 2 (1)

| Pore Volume
or HCPV/km2
Distribution

Net sand, Net

As aresult, wells (RED) are biased and a But often, this
correction should be made before volume calcs happens !



Biased and spatially

clustered Sampling

A Clustered sampling with a sampling bias occurs when wells are
clustered on/near presumed reservoir sweet spots

A Very common in the energy industry because of a desire to drill
good reservoir combined with drilling access limitations

A How can we obtain the fAireal o distribt
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Sample De-clustering

Cell size 2 x 2 PHIT Distribution
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Sample De-clustering

Cell size 5 x 5 PHIT Distribution
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Sample De-clustering

Por.Tot.

— 025
— 024

0.

01

0

Cell size 10 x 10

PHIT Distribution

0.18 0.2 0.22 0.24
1

o¢

20
1

10
1

(%), Frequency

Overall PHIT Mean

0.12 0.14 0.16

0.21

0.2

0.1%

0.18

0.17

M/

0.16 T T T T

L
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Cell size



Sample De-clustering

Cell size 20 x 20 PHIT Distribution
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Sample De-clustering

Cell size 26 x 26 PHIT Distribution
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Distribution models: | EAP

de-clustered versus original Energy
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Statigraphic zone / facies bias
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Porosity mapping
I Depth trends



Porosity T Depth trends

- alead Into the issue

Some common knowledge:

Porosity generally declines with depth because of
compaction

In formation evaluation of wells, the concept of a
porosity floor is often used to discriminate flow-
able reservoir from tight rock

On a well-by well basis, this is all fine
HOWEVER

Wells intersecting the same reservoirs at different
depth but using the same Nnfg
reservoir, can create a very messy situation for the
geologist trying to map or model Net Reservoir and
Porosity across the field



Impact of Porosity cut-off on

Por-depth and N2G trends

Use of Porosity Wel logs PHIT w/o cutoff, colored by reservoir flag
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PHIT Modeling with Depth Trend
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PHIT cutoff Modeling with Depth Trend @LEAP
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Statistics of Porosity

Modelling

A Modeling of Porosity will be too optimistic at depth when using
porosity cut-off
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Porosity mapping
I seismic-based areal trends



Seismic-based porosity trends | EAP
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Typical3D modeling

workflow
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Some of the key choices

Which seismic attribute to
use to constrain porosity,
e.g.,
Absolute versus relative
Impedance

P- or S-Impedance
How to access reliability of

the seismic porosity
prediction ?

What correlation coefficient to Correlation
use in the co-kriging ? coefficient = ?

attribute to use as

Which seismic
secondary variable ?




